

## User manual

## **Lithium-Ion Storage Battery**

Product Model: GTX5000





## **Contents**

| 1 | Ger  | neral Inf | formation                               | 1  |
|---|------|-----------|-----------------------------------------|----|
|   | 1.1  | Val       | idity                                   | 1  |
|   | 1.2  | Inte      | ended Use                               | 1  |
|   | 1.3  | Ide       | ntifying The Product                    | 3  |
| 2 | Safe | ety       |                                         | 5  |
| 3 | Tec  | hnical [  | Data                                    | 7  |
| 4 | Tec  | hnical I  | tems                                    | 9  |
| 5 | Pro  | duct Ov   | erview                                  | 11 |
|   | 5.1  | Bri       | ef Introduction                         | 11 |
|   | 5.2  | Inte      | erface Introduction (Front Side)        | 12 |
|   |      | 5.2.1     | Start Button                            | 13 |
|   |      | 5.2.2     | LED Indicator Definition                | 14 |
|   | 5.3  | Inte      | erface Introduction (Left Side)         | 15 |
|   |      | 5.3.1     | Wiring instructions                     | 16 |
|   |      | 5.3.2     | Link Port and Automatic Coding Function | 18 |
|   |      | 5.3.3     | CAN / RS485 Port                        | 18 |
|   |      | 5.3.4     | RS232 Port                              | 19 |
|   |      | 5.3.5     | Output Dry Contact Terminal             | 20 |
|   |      | 5.3.6     | Extend LCD Terminal                     | 20 |
| 6 | Inst | allation  | Guide                                   | 23 |
|   | 6.1  | Che       | ecking Before Installation              | 23 |
|   |      | 6.1.1     | Checking Outer Packing Materials        | 23 |
|   |      | 6.1.2     | Checking Deliverables                   | 24 |





|   | 6.2  | Too      | ls                                                    | 26      |
|---|------|----------|-------------------------------------------------------|---------|
|   | 6.3  | Inst     | allation requirements                                 | 26      |
|   |      | 6.3.1    | Installation environment requirements                 | 26      |
|   |      | 6.3.2    | Installation carrier requirements                     | 28      |
|   | 6.4  | Inst     | allation Method                                       | 28      |
|   | 6.5  | Inst     | allation Instructions                                 | 30      |
|   |      | 6.5.1    | Dimensions                                            | 30      |
|   |      | 6.5.2    | Single Machine Installation Step                      | 31      |
|   |      | 6.5.3    | Parallel Machine Installation Step                    | 37      |
|   | 6.6  | Elec     | etrical Connection                                    | 41      |
|   |      | 6.6.1    | Electrical Connection Process                         | 41      |
|   |      | 6.6.2    | Single machine electrical connection schematic        | 41      |
|   |      | 6.6.3    | Single machine wiring step                            | 42      |
|   |      | 6.6.4    | Parallel machine electrical connection schematic diag | gram45  |
|   |      | 6.6.5    | Parallel machine wiring step for suspended on wall    | 46      |
|   |      | 6.6.6    | Parallel machine wiring step for pedestal mounted     | 53      |
| 7 | Clea | aning an | d Maintenance                                         | 61      |
|   | 7.1  | Clea     | aning                                                 | 61      |
|   | 7.2  | Mai      | ntenance                                              | 61      |
|   |      | 7.2.1    | Recharge Requirements During Normal Storage           | 61      |
|   |      | 7.2.2    | Recharge Requirements When Over Discharged            | (90%DOD |
|   |      | with ne  | w battery)                                            | 62      |
| 8 | Con  | npatible | Inverter List                                         | 63      |
| 9 | Con  | nmon Is  | sues and Solutions                                    | 65      |
|   | 9.1  | Con      | nmon Issues and Solutions                             | 65      |
|   | 9.2  | Eme      | ergency                                               | 67      |



## 1 General Information

This manual introduces AMASS GTX5000 LFP Battery Product from SOFAR.

Please read this manual before you use the battery.

Any confusion, please contact SOFAR immediately for advice and clarification.

## 1.1 Validity

This user manual is applicable to AMASS GTX5000.

This user manual contains AMASS GTX5000 product information, usage guidance, safety information, installation guide and details on common operating issues and subsequent corrective actions.

#### 1.2 Intended Use

AMASS GTX5000 is an energy storage unit that is designed to be used in residential on-grid applications with the capability for short-term backup.

Notes regarding intended use:

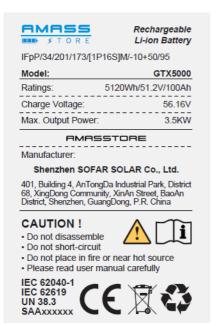
AMASS GTX5000 is not suitable for supporting life-sustaining medical devices.



This product is intended for use only in accordance with the information provided in the enclosed documentation and with the locally applicable standards and regulations. Any other application may cause personal injury or property damage. The illustrations in this manual are meant only to help explain system configuration concepts, includes usage guidance, safety precautions, and common operating issues and subsequent corrective actions.

Alterations to the product, e.g. changes or modifications, are only permitted with the express written permission of SOFAR. Unauthorized alterations will void warranty claims. SOFAR shall not be held liable for any damage caused by such changes. Any use of the product other than that described in the Intended Use section does not qualify as appropriate. The enclosed documentation is an integral part of this product. Keep the documentation in a convenient place for future reference and observe all instructions contained therein. The type label (see Section 1.3) must remain attached to the product.

AMASS GTX5000 series products must work with compatible inverters which are listed in the "Compatible Inverter List" section of this manual.


Please contact SOFAR or local after-service providers within 1 week once the user decides to cease using their SOFAR Battery products.



## 1.3 Identifying The Product

The type labels were attached on the product, which contain the product identification information. For safe usage, the user must be well-informed of the contents in the type labels.

The type labels include:





working temperature (suitable operation temperature

If battery is at high temperature usually, it will impact

is 0~45°C).

battery performance.





## 2 Safety

This section contains safety information that must be observed at all times when working on or with batteries. To prevent personal injury or property damage and to ensure long-term operation of the batteries, read this section carefully and observe all safety information at all times.



#### WARNING

#### **Environmental Requirement**

Do not expose the battery to temperature above 50°C

Do not place the battery near any heat sources

Do not expose the battery to moisture or liquids

Do not expose the battery to corrosive gases or liquids

Do not expose the battery to direct sunlight for extended periods of time

Do not allow the battery power terminals to touch conductive objects such as wires

Place battery in secure location away from children and animals



## **Operation Precautions**

Do not disassemble the battery

Do not touch the battery pack with wet hands

Do not crush, drop or puncture the battery

Do not reverse the polarity or connect in series

Do not short circuit the terminals, remove all jewelry items that could product a short circuit before installation and handling

Always dispose of the product according to local safety regulations

Store and recharge battery in a manner in accordance with this user manual

Ensure reliable grounding

Disconnect battery from power/load and then power off battery before installation and maintenance

When storing or handing, do not stack up batteries when outside protective package

Packaged batteries should not be stacked more than specified number stipulated on the package

Continued operation of a damaged battery can result in dangerous situation that may cause severe injury due to electrical shock.



## 3 Technical Data

| Basic Parameters             | Specification          |
|------------------------------|------------------------|
| Nominal Capacity (Ah)        | 100AH                  |
| Nominal Voltage (V)          | 51.2Vdc                |
| Total Energy                 | 5120Wh                 |
| Usable Energy(90% DOD)       | 4600Wh                 |
| Charge Voltage (V)           | 55.68~56.16Vdc         |
| Discharge Voltage (V)        | 45.6-56.16Vdc          |
| Nominal Charge Current(A)    | 50A                    |
| MAX. Charge Current(A)       | 50A                    |
| Nominal Discharge Current(A) | 50A                    |
| Max. Discharge Current(A)    | 75A (3.5kw)            |
| Communication                | RS232、RS485、CAN        |
| Working Temperature          | -20°C ~60°C            |
|                              | ≤25°C, 12 months;      |
| Storage Temperature          | $\leq$ 35°C, 6 months; |
|                              | ≤45°C, 3 months        |
| Operating humidity           | ≤ 95%RH                |
| Storage humidity             | ≤ 95%RH                |
| Max.Operating Altitude       | ≤2000m                 |
| Scalable                     | Up to 4                |
| Enclosure Protection Rating  | IP20                   |







| Net Weight(Kg) | 55Kg                                         |
|----------------|----------------------------------------------|
| Dimension (mm) | 480mm*211.5mm*600mm                          |
| Certification  | IEC62619、UN38.3、IEC62040-1、SAA etc.          |
| Cycle Life     | 6000 Cycles @ 80% DOD / 25°C / 0.5C, 60% EOL |

**Note:** Operating current derating according to cell voltage and battery temperature.



## 4 Technical Items

| No. | Terms           | Comment                                                           |  |  |  |
|-----|-----------------|-------------------------------------------------------------------|--|--|--|
| 1   | Discharge       | Battery output power for load                                     |  |  |  |
| 2   | Charge          | To put electricity into battery by charger                        |  |  |  |
| 3   | Full charge     | Battery had been full charged, SOC is 100%.                       |  |  |  |
| 4   | Standby         | Ready for charging or discharging                                 |  |  |  |
| 5   | Shutdown        | Power off                                                         |  |  |  |
| 6   | SOC             | State of Charge(Useable capacity)                                 |  |  |  |
| 7   | Battery voltage | The voltage between B+/B-                                         |  |  |  |
| 8   | Cell voltage    | Single cell voltage                                               |  |  |  |
| 9   | Pack voltage    | The voltage between P+/P-                                         |  |  |  |
| 10  | Alarm           | Indicate that the battery is in abnormal status                   |  |  |  |
| 11  | Protect         | Battery stops charging or discharging and is recoverable          |  |  |  |
| 12  | Fault           | Battery or BMS is broken, need to be replaced                     |  |  |  |
| 13  | Over discharged | Battery is lack of electricity, and needs to be recharged in time |  |  |  |





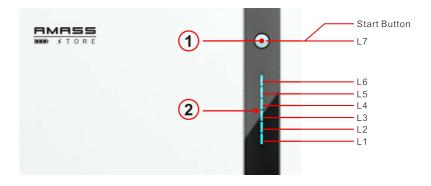
## 5 Product Overview

## 5.1 Brief Introduction



**Product overview** 

AMASS GTX5000 is a battery system with an operating voltage range between 45.6~56.16V. It is utilized in household energy storage applications and works together with a low-voltage inverter to realize the goal of energy storage for the home.


AMASS GTX5000 has built-in BMS (battery management system), which can manage and monitor cells information including voltage, current and temperature.



What's more, BMS can balance cells charging to extend cycle life. BMS has protection functions including over-discharge, over-charge, over-current and high/low temperature; the system can automatically manage charge state, discharge state and balance state.

Multiple batteries can connected in parallel to expand capacity and power for larger capacity and longer power supporting duration requirements, AMASS GTX5000 support up to 4 parallel operation.

## **5.2 Interface Introduction (Front Side)**



| No. | Items                   |  |  |  |
|-----|-------------------------|--|--|--|
| 1   | Start Button            |  |  |  |
| 1   | Status Indicators       |  |  |  |
| 2   | Battery Level Indicator |  |  |  |



#### 5.2.1 Start Button

Start button integrated LED status Indicators, to show Battery running status or warning status.

- 1. Press start button more than 3s and then release the button, LED will lights from L7 to L1, and then enters to automatic coding, all LED lights flash and L7 is shown as purple. After the automatic coding, L1 to L6 shows the normal capacity, and L7 shows the running status:
  - L7: Blue, long lighting when charging and flash when discharging;
  - L7: Red, long bright if equipment failure or protected.
- 2. In parallel system, connect the parallel communication wiring according to section 5.3.1, then long press the start button of the **Master PACK**, after normal startup, the battery system will automatically encode and assign ID to each parallel PACK, and then the parallel system will run normally.
- 3. Press start button of **Master PACK** more than 3s and then release the button, LED will lights from L1 to L7 to shut down the battery module. In parallel system, the master pack will shut down after all slave packs shut down.



## 5.2.2 LED Indicator Definition

- L1 to L6: Blue, show the battery level, each light indicate 16.67% SOC.
- L7: Blue or Red, show battery running status, blue is normal, red is abnormal.

#### **LED Indicators Instructions**

|             | -            | RUN     | ALM   |                                | Battery Level Indicator        |       |       | tor   |                   |                                                                       |
|-------------|--------------|---------|-------|--------------------------------|--------------------------------|-------|-------|-------|-------------------|-----------------------------------------------------------------------|
| Caratria    |              | L7      |       | L6                             | L5                             | L4    | L3    | L2    | L1                | Descriptions                                                          |
| Status      |              |         | _     |                                |                                |       |       |       |                   | Descriptions                                                          |
| Shut down   |              | OFF     | OFF   | OFF                            | OFF                            | OFF   | OFF   | OFF   | OFF               | All OFF                                                               |
| Standby     |              | Flash 1 | OFF   | According to the battery level |                                |       |       |       | Indicates Standby |                                                                       |
|             | Normal       | Light   | OFF   |                                | According to the battery level |       |       |       |                   | The highest capacity indicator LED flashes (flash 2), others lighting |
| Charging    | Full Charged | Light   | OFF   | Light                          | Light                          | Light | Light | Light | Light             | Turn to standby status when charger off                               |
|             | Protection   | OFF     | Light | OFF                            | OFF                            | OFF   | OFF   | OFF   | OFF               | Stop charging                                                         |
|             | Normal       | Flash 3 | OFF   |                                | According to the battery level |       |       | level |                   |                                                                       |
| Discharging | UVP          | OFF     | OFF   | OFF                            | OFF                            | OFF   | OFF   | OFF   | OFF               | Stop discharging                                                      |
|             | Protection   | OFF     | Light | OFF                            | OFF                            | OFF   | OFF   | OFF   | OFF               | Stop discharging                                                      |
| Fault       |              | OFF     | Light | OFF                            | OFF                            | OFF   | OFF   | OFF   | OFF               | Stop Charging and Discharging                                         |

#### **Charging Battery Level Indicators Instructions**

| Status                   |         |       |         |         | Chai    | rging   |         |        |
|--------------------------|---------|-------|---------|---------|---------|---------|---------|--------|
| Battery Level Indicators |         | L7    | L6      | L5      | L4      | L3      | L2      | L1     |
|                          | 0~17%   |       | OFF     | OFF     | OFF     | OFF     | OFF     | Flash2 |
|                          | 18~33%  |       | OFF     | OFF     | OFF     | OFF     | Flash 2 | Light  |
| Battery Level            | 34~50%  | 7.1.  | OFF     | OFF     | OFF     | Flash 2 | Light   | Light  |
| (707                     | 51~66%  | Light | OFF     | OFF     | Flash 2 | Light   | Light   | Light  |
|                          | 67~83%  |       | OFF     | Flash 2 | Light   | Light   | Light   | Light  |
|                          | 84~100% |       | Flash 2 | Light   | Light   | Light   | Light   | Light  |

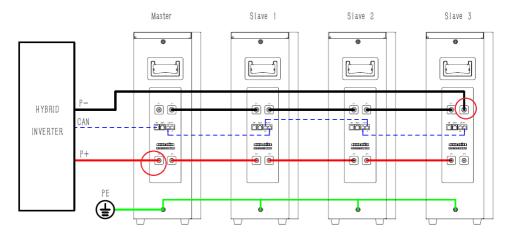


## **Discharging Battery Level Indicators Instructions**

| Status                   |         | Discharging |       |       |       |       |       |       |  |
|--------------------------|---------|-------------|-------|-------|-------|-------|-------|-------|--|
| Battery Level Indicators |         | L7          | L6    | L5    | L4    | L3    | L2    | L1    |  |
|                          | 0~17%   |             | OFF   | OFF   | OFF   | OFF   | OFF   | Light |  |
|                          | 18~33%  | Flash 3     | OFF   | OFF   | OFF   | OFF   | Light | Light |  |
| Battery Level            | 34~50%  |             | OFF   | OFF   | OFF   | Light | Light | Light |  |
| (707                     | 51~66%  |             | OFF   | OFF   | Light | Light | Light | Light |  |
|                          | 67~83%  |             | OFF   | Light | Light | Light | Light | Light |  |
|                          | 84~100% |             | Light | Light | Light | Light | Light | Light |  |

Note: The flashing instructions, flash 1 - light 0.25s / off 3.75 seconds; flash 2 - 0.5s light / 0.5s off; flash 3 - 0.5s light / 1.5s off.

## **5.3** Interface Introduction (Left Side)




| No. | Items                | No. | Items         |
|-----|----------------------|-----|---------------|
| 1   | Power Terminals      | 5   | Link Port In  |
| 2   | Dry Contact Terminal | 6   | Link Port Out |
| 3   | Extend LCD Interface | 7   | RS232         |
| 4   | Grounding            | 8   | CAN/RS485     |



## **5.3.1** Wiring instructions

### Wiring Diagram



## 1. Power cable wiring instructions

Power cable terminals: there are two pair of power terminals, each pair with same function.

**Single module:** Any of the terminals of each pair can be used.

## Parallel system:

NOTE: P+ must connect to master pack, and P- must connect to last slave pack.

**Master pack:** one of the P+ terminals connect to PCS, the other one paralleling to another battery for capacity expanding.



**Last slave pack:** one of the P- terminals connect to equipment, the other one paralleling to another battery for capacity expanding.

**Other slave pack:** for each pair terminals, paralleling to another battery for capacity expanding.

2. Parallel communication cable wiring instructions

Link Port In / Link Port Out communication terminal (RJ45 port) is integrated with the signal for automatic coding function.

NOTE: The connection order of Port In and Port Out should not be wrong, otherwise it will lead to the automatic coding failed.

It is required that the Port In of the master PACK do not connected to the communication line, and the parallel communication wire is connected to the Port In of the first slave PACK from the Port Out of the master PACK. Then the Port Out of the first slave PACK is connected to the Port In of the second slave PACK. The Port Out of the second slave PACK is then connected to the Port In of the third slave PACK. The parallel system support up to 4 parallel operation, and Port Out of the last slave PACK do not connected to the communication line.

3. PCS communication cable wiring instructions

The CAN communication port of the Master pack is connected to PCS.



#### 4. Grounding wiring instructions

The ground wire of the battery system needs to be connected reliably. Connect the grounding of the parallel system first, and then ground it nearby through the connection point of one of the battery packs.

#### 5.3.2 Link Port and Automatic Coding Function

Link Port In / Link Port Out Communication follow RS485 protocol, for communication between multiple parallel batteries.

After confirming the wiring is correct(refer to section 5.3.1), long press the startup button of the **Master PACK**, after normal startup, the parallel battery system will automatically code and assign ID to each parallel PACK, and then the parallel system will run normally(refer to section 5.2.1).

#### 5.3.3 CAN / RS485 Port

CAN / RS485 Communication Terminal(RJ45 port) follow CAN protocol / RS485 protocol, connect to Inverter.

 BMS controls the charging current/charging voltage or discharge current/discharge cut-off voltage of the PCS through CAN communication according to the battery voltage and battery temperature.



- 2. If the battery capacity is less than 8%, BMS controls the PCS to make compulsory recharge through the CAN communication to avoid the damage of the battery due to deep discharge.
- 3. If SOC was less than 97% for one consecutive month, BMS controlled PCS by CAN communication to full charge the battery to corrected SOC and fully charged capacity.

Note: Through the Sofar Solar PCS, customers can set the fully charged time period, which is from 3AM to 6AM by default.

| PIN         | Definition                 |
|-------------|----------------------------|
| Pin 1、Pin 8 | RS485-B (to PCS, reserved) |
| Pin 2、Pin 7 | RS485-A (to PCS, reserved) |
| Pin 3       | NC                         |
| Pin 4       | CANH (to PCS)              |
| Pin 5       | CANL (to PCS)              |
| Pin6        | GND                        |

#### 5.3.4RS232 Port

RS232 Communication Terminal(RJ45 port) follow RS232 protocol, for manufacturer or professional engineer to debug or service.



| PIN         | Definition |
|-------------|------------|
| Pin 8、Pin 1 | GND        |
| Pin 2、Pin 7 | RS232_TX   |
| Pin 3、Pin 6 | RS232_RX   |
| Pin 4、Pin 5 | NC         |

#### 5.3.5 Output Dry Contact Terminal

Dry Contact Terminal: provided 2 output dry contact signal.



| Pin      | Definition            | Note    |      |           |
|----------|-----------------------|---------|------|-----------|
| NO1/COM1 | Prohibit Charging;    | Maximum | load | capacity: |
| NO2/COM2 | Prohibit Discharging. | 30V/1A  |      |           |

#### 5.3.6 Extend LCD Terminal

This interface can be connected to an extended LCD to display the detailed operation status of the battery.

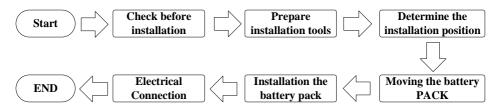
Note: External LCD display is an optional accessory.










| PIN   | Definition |
|-------|------------|
| Pin 1 | GND        |
| Pin 2 | RX         |
| Pin 3 | TX         |
| Pin 4 | VCC        |

#### External LCD information reference as follows:





## 6 Installation Guide

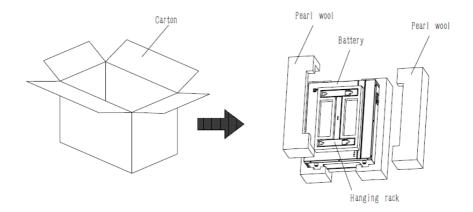


Installation flow chart

## **6.1 Checking Before Installation**

## **6.1.1 Checking Outer Packing Materials**

Packing materials and components may be damaged during transportation. Therefore, check the outer packing materials before installing the battery. Checking the surface of packing materials for damage, such as holes and cracks. If any damage is found, do not unpack the battery and contact the dealer as soon as possible. You are advised to remove the packing materials within 24 hours before installing the battery.




## **6.1.2** Checking Deliverables

After unpacking the battery, check whether deliverables are intact and complete.

If any damage is found or any component is missed, contact the dealer.

The below table shows the components and mechanical parts that should be delivered.



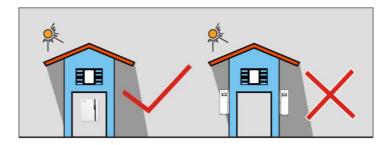


| NO. | Pictures | Quantity | Description               |
|-----|----------|----------|---------------------------|
| 1   |          | 1PCS     | Battery                   |
| 2   |          | 1PCS     | Hanging rack              |
| 3   | 0        | 4PCS     | Fixed leg                 |
| 4   | 0        | 1PCS     | Fixed support             |
| 5   |          | 1PCS     | M6*60                     |
| 6   | шш       | 4PCS     | M10*60 Expansion<br>bolts |
| 7   |          | 4PCS     | M6*16                     |
| 8   |          | 1PCS     | Manual                    |
| 9   |          | 1PCS     | Test report               |
| 10  | M (M)    | 1PCS     | Certificate               |

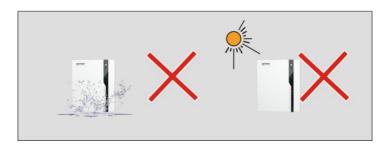


## **6.2 Tools**

| Model        | Tools         |                     |                         |  |
|--------------|---------------|---------------------|-------------------------|--|
|              | Knife         | Hammer drill (12mm) | Socket wrench (10/16mm) |  |
|              |               | A VIII.             |                         |  |
|              | Rubber mallet | Cross Screwdriver   | Marker                  |  |
| Installation |               |                     | 4                       |  |
|              | Incinometer   | Measuring tape      |                         |  |
|              | 0             |                     |                         |  |
|              | ESD gloves    | Safety goggles      | Anti-dust respirator    |  |
|              |               |                     |                         |  |
| Protection   | Safety shoes  |                     |                         |  |
|              | Et les        |                     |                         |  |


## **6.3 Installation requirements**

## **6.3.1** Installation environment requirements


- Install the battery in the indoor environment.
- Place battery in secure location away from children and animals.



- Do not place the battery near any heat sources and avoid sparks.
- Do not expose the battery to moisture or liquids.
- Do not expose the battery to direct sunlight.









## 6.3.2 Installation carrier requirements

- The mounting carrier shall have fire resistance. Do not install batteries on flammable buildings.
- The mounting carrier surface shall meet the load bearing requirements.

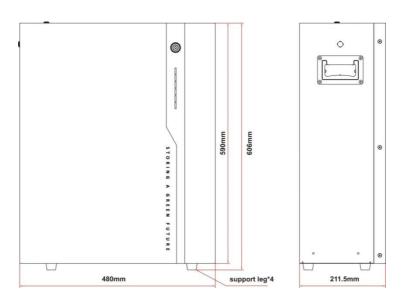


## **6.4 Installation Method**

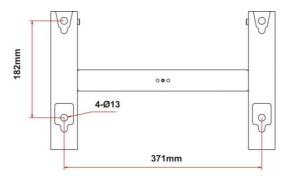
Suspended on wall






## · Pedestal mounted






## **6.5** Installation Instructions

#### 6.5.1 Dimensions



## **Battery size**



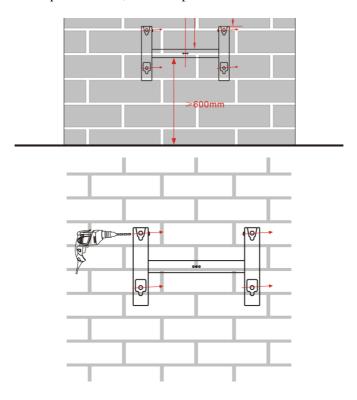

Hanging rack size



## 6.5.2 Single Machine Installation Step

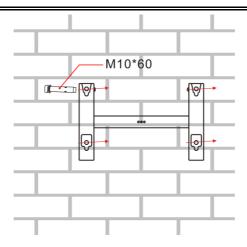
# 6.5.2.1 Single Machine installation location requirements for suspended on wall




## 6.5.2.2 Single Machine installation step for suspended on wall

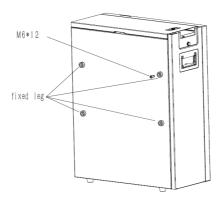
## Step 1

To determine the position for drilling holes, and then mark the hole position by using a marker, use the hammer drill to drill hole on the wall. Keeping the




hammer perpendicular to the wall, do not shake when drilling, so as not to damage the walls. If the aperture errors, need to reposition.

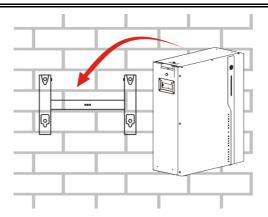



Step 2 Fix the wall hanger with expansion screws.





Step 3

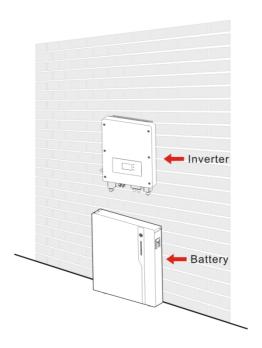

Remove the battery and install the fixed leg.



Step 4

Putting the battery hook on the hanging rack.





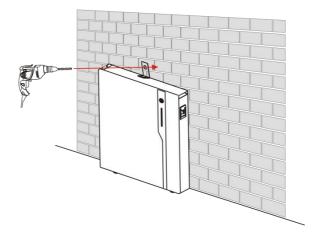

Step 5
Fix the fixing screw (left side or right side) to ensure the safety.



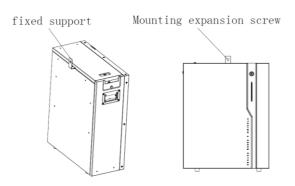


# 6.5.2.3 Single Machine installation location requirements for pedestal mounted




### 6.5.2.4 Single Machine installation step for pedestal mounted

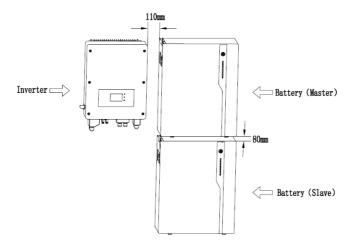
## Step 1


To determine the position for drilling holes, and then mark the hole position by using a marker, use the hammer drill to drill hole on the wall. Keeping the hammer perpendicular to the wall, do not shake when drilling, so as not to damage



the walls. If the aperture errors, need to reposition.



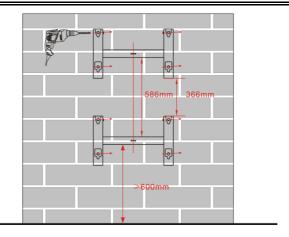

Step 2  $\label{eq:step 2}$  Install the fixing plate to the battery, and then fix the mounting plate to the wall with expansion screws.





#### **6.5.3** Parallel Machine Installation Step

# 6.5.3.1 Parallel Machine installation location requirements for suspended on wall

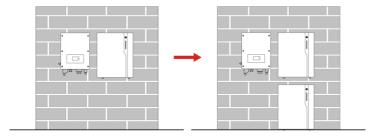



#### 6.5.3.2 Parallel Machine installation step for suspended on wall

### Step 1

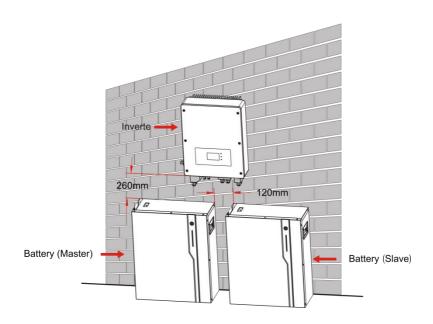
According to the installation location requirements in section 6.5.3.1, determine the position for drilling holes, level hole positions, and then mark the hole position by using a marker.






Step 2

Use the hammer drill to drill hole on the wall. Keeping the hammer perpendicular to the wall, do not shake when drilling, so as not to damage the walls. If the aperture errors, need to reposition.


Step 3

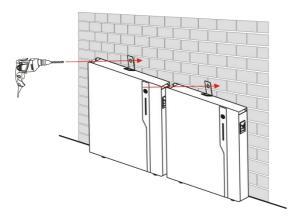
According to the installation instruction in section 6.5.2.2, install the top battery first, and then install the other one.





# 6.5.3.3 Parallel Machine installation location requirements for pedestal mounted

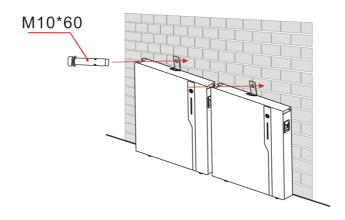



#### 6.5.3.4 Parallel Machine installation step for pedestal mounted

#### Step 1

According to the installation location requirements in section 6.5.3.3, determine the position for drilling holes, and then mark the hole position by using a marker, use the hammer drill to drill hole on the wall. Keeping the hammer perpendicular to the wall, do not shake when drilling, so as not to damage the walls. If the

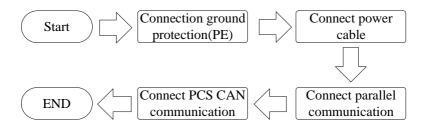



aperture errors, need to reposition.

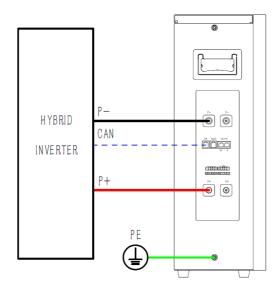


Step 2

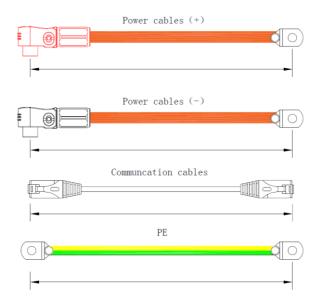
Install the fixing plate to the battery, and then fix the mounting plate and the wall


with expansion screws.






## **6.6 Electrical Connection**

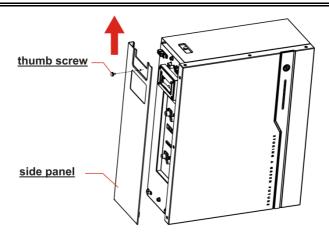

#### **6.6.1 Electrical Connection Process**



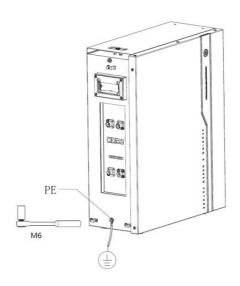
#### 6.6.2 Single machine electrical connection schematic





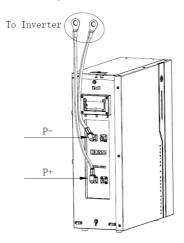



## 6.6.3 Single machine wiring step


## Step 1

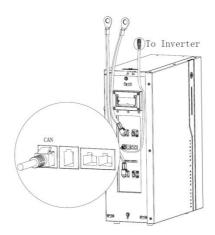
After finished installation (refer to section 6.5.2), remove side panel.






Step 2
Connect PE line.

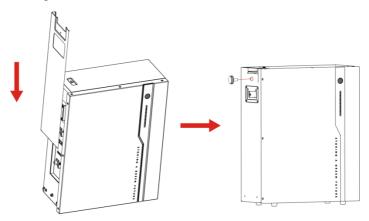




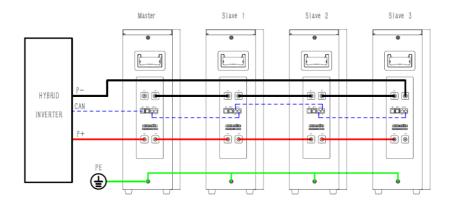

Connect Power Cable from battery to inverter.



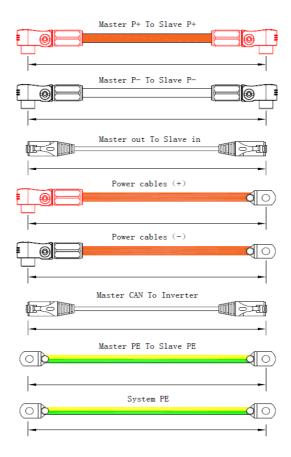
Step 4


Connect CAN communication line to inverter.






Step 5


Cover the side panel and fix screw.

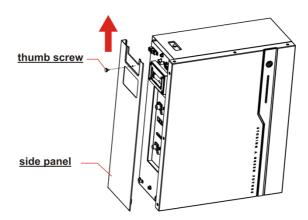


# ${\bf 6.6.4 Parallel\ machine\ electrical\ connection\ schematic\ diagram}$





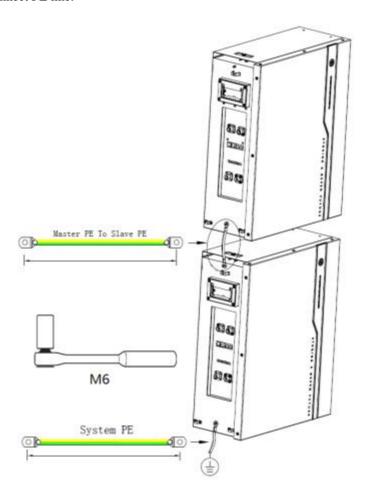



# 6.6.5 Parallel machine wiring step for suspended on wall

Step 1

After finished installation (refer to section 6.5.3.2), remove side panel of all

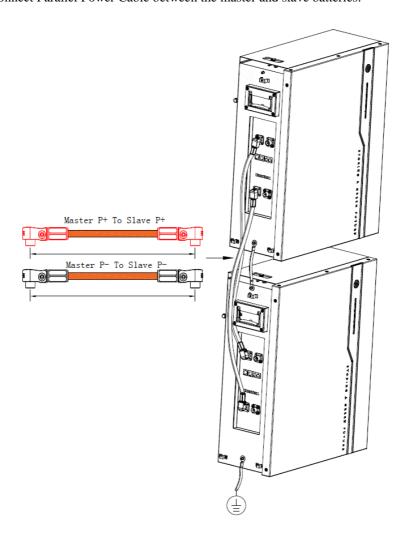



battery.





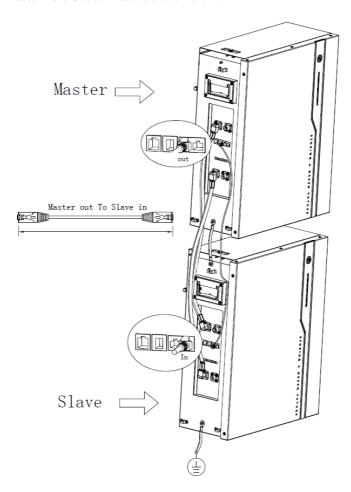
Step 2


## Connect PE line.



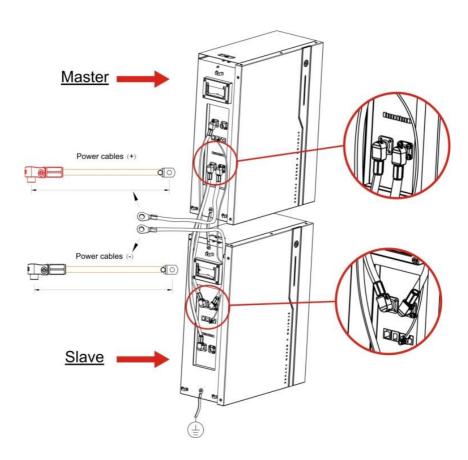


Step 3


Connect Parallel Power Cable between the master and slave batteries.

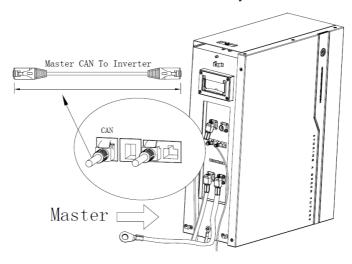





Connect parallel communication line between the master battery and slave battery.

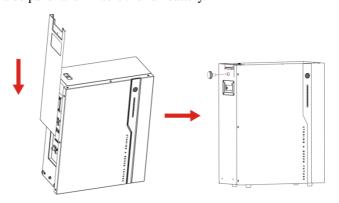
Note: Master Port Out connect to slave Port In.






Connect Power Cable (+) from master battery to Inverter, and connect Power Cable (-) from last slave battery to Inverter.



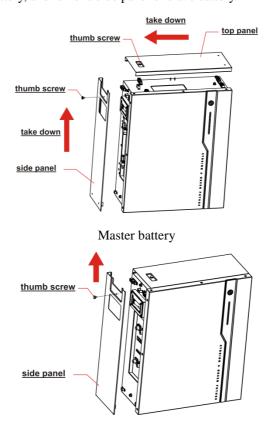



Connect CAN communication line from master battery to inverter.



Step 7

Cover the side panel and fix screw of all battery.



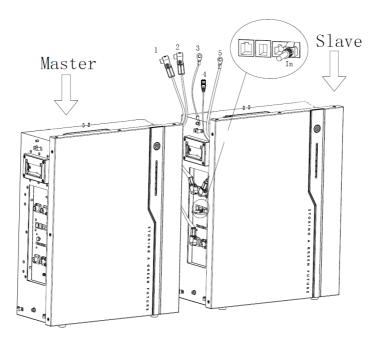



#### 6.6.6 Parallel machine wiring step for pedestal mounted

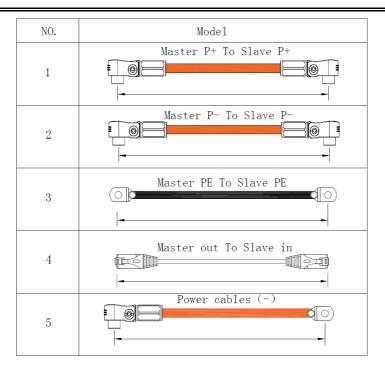
## Step 1

After finished installation (refer to section 6.5.3.4), remove side panel and top panel of master battery, and remove side panel of slave battery.




Slave battery

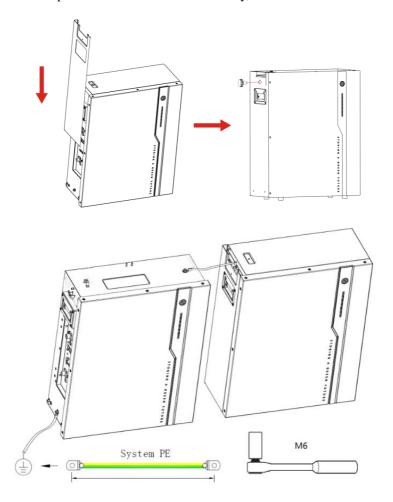



Slave battery wiring.

Connect parallel communication line, parallel Power Cable P+, parallel Power Cable P-, PE line, Power Cable (-) to slave battery.

Note: Parallel communication line need connect to Port In of slave battery.

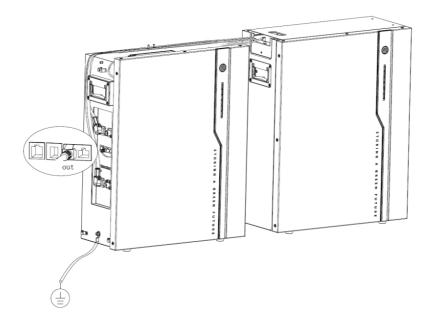






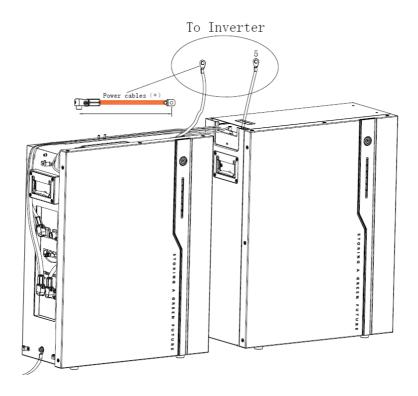



Step 3


Cover the side panel and fix screw of slave battery, and connect PE line.

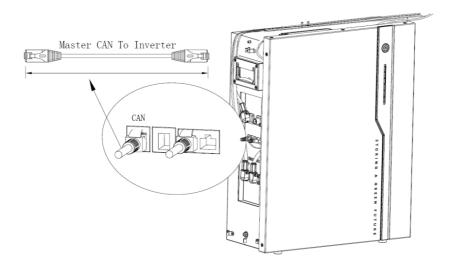





Connect parallel communication line, parallel Power Cable P+, parallel Power Cable P- from salve battery to master battery.

Note: Parallel communication line need connect to Port Out of master battery.

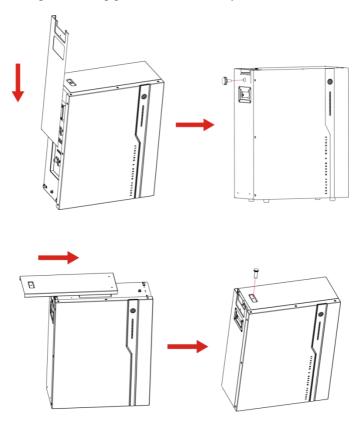





Connect Power Cable (+) from master battery to Inverter, and connect Power Cable (-) from last slave battery to Inverter.






Connect CAN communication line from master battery to inverter.





Step 7

Cover the side panel and top panel of master battery.





# 7 Cleaning and Maintenance

### 7.1 Cleaning

#### **CAUTION:**

Please power off the system before cleaning.

It is recommended that the AMASS GTX5000 should be cleaned periodically. If the enclosure is dirty, please use a soft, dry brush or a dust collector to remove the dust. Liquids such as solvents, abrasives or corrosive liquids should not be used to clean the enclosure.

#### 7.2 Maintenance

#### 7.2.1 Recharge Requirements During Normal Storage

Batteries should be stored in an environment with a temperature range between  $-10^{\circ}\text{C} \sim +45^{\circ}\text{C}$ , and maintained regularly according to the following table with 0.5C (50A) current until 40% SOC after a long time of storage.



#### Recharge conditions when in storage

| Storage<br>Environment<br>Temperature | Relative Humidity of<br>Storage Environment | Storage Time | soc         |
|---------------------------------------|---------------------------------------------|--------------|-------------|
| Below -10℃                            | /                                           | prohibit     | /           |
| -10~25℃                               | 5%~70%                                      | ≤12 months   | 30%≤SOC≤60% |
| 25~35℃                                | 5%~70%                                      | ≤6 months    | 30%≤SOC≤60% |
| 35~45°C                               | 5%~70%                                      | ≤3 months    | 30%≤SOC≤60% |
| Above 45℃                             | /                                           | prohibit     | /           |

# 7.2.2 Recharge Requirements When Over Discharged (90%DOD with new battery)

Please recharge the over discharged batteries in a timeframe that is in accordance to the following table, otherwise the over discharged battery modules will be damaged.

#### Recharge conditions when battery is over discharged

| <b>Storage Environment</b> | Storage Time | Note                        |  |
|----------------------------|--------------|-----------------------------|--|
| Temperature                | Storage Time | Tiote                       |  |
| -10~25℃                    | ≤15 days     | Battery Pack disconnect to  |  |
| 25~45°C                    | ≤7 days      | PCS                         |  |
| -10~45°C                   | < 12 hours   | Battery Pack connect to PCS |  |



# **8** Compatible Inverter List

To make sure that the system can operate normally, please choose AMASS GTX5000 compatible inverters. For more details, please refer to the Compatible Inverter List.

#### **Compatible Inverter List**

| No. | Compatible Inverter |  |
|-----|---------------------|--|
| 1   | Sofar Solar         |  |
| 2   |                     |  |





## **9** Common Issues and Solutions

#### 9.1 Common Issues and Solutions

User can monitor the running status, warnings and alarms information from the App or LCD display of inverter, or battery extend LCD.

#### 1. Battery cannot turn on, and LED indicator all off

Battery deep discharge, need to charge first. If the external charger power supply voltage is 51V or more, the battery still unable to turn on, please contact Sofar.

#### 2. The battery can be turned on, but cannot charge or discharge

If the red light is lighting, that means system is abnormal, please check values as following:

- Solution: to move battery to the normal operating temperature range between
- -10°C and 55°C.
- b) Temperature: Above  $60^{\circ}$ C or under  $-20^{\circ}$ C, the battery could not discharge.
- Solution: to move battery to the normal operating temperature range between



-20°C and 60°C.

c) Current: If current is greater than 100A, battery protection will turn on.

Solution: If operating current is too large, change the settings on power supply side.

d) High Voltage: If battery voltage above 56V or more, battery charge protection will turn on.

Solution: If battery is full charge, please discharge the battery for some time; if charging voltage is too high, change the settings on power supply side.

e) Low Voltage: When the battery discharges to 45.6V or less, battery discharge protection will turn on.

Solution: Charge the battery until the red light turn off.

Excluding the five points above, if the faulty is still cannot be located, turn off battery and contact Sofar.

#### 3. In parallel system, SOC indicator display is different

- a) For the first installation, please make a full charge first to balance the capacity gap;
- b) If the lowest SOC LED indicators is only one less than the highest SOC LED indicators, and SOC LED indicator will become same within 10 minutes, it is a



normal running status;

c) Before expand capacity for online battery, please charge or discharge the online battery to 45%-50% SOC; after expand capacity, please full charge the battery system to balance the capacity gap.

Make sure the capacity gap no more than 80% before parallel. If capacity gap is large, it will take about 2 cycles to balance the capacity gap. The real balance time depend on the capacity gap and charge or discharge current.

NOTE: Before expand capacity or update software, please cut off the whole system, include PCS and Battery system.

Excluding the three points above, if the SOC display faulty still exist, please contact Sofar.

#### 9.2 Emergency

Please cut off the power supply and turn off the battery in an emergency.

1) Wet Batteries

If the battery pack is wet or submerged in water, do not let people access it, and then contact Sofar or an authorized dealer for technical support.

2) Fire

NO WATER! Only dry powder fire extinguisher can be used; if possible, move the



battery pack to a safe area before it catches fire.

#### 3) Leaking Batteries

If the battery pack leaks electrolyte, avoid contact with the leaking liquid or gas. If someone is exposed to the leaked substance, immediately perform the actions described below.

Inhalation: Evacuate the contaminated area, and seek medical attention.

Contact with eyes: Rinse eyes with flowing water for 15 minutes, and seek medical attention.

Contact with skin: Wash the affected area thoroughly with soap and water, and seek medical attention.

Ingestion: Induce vomiting, and seek medical attention.

#### 4) Damaged Batteries

Damaged batteries are dangerous and must be handled with the utmost care. They are not fit for use and may pose a danger to people or property. If the battery pack seems to be damaged, pack it in its original container, and then return it to Sofar or an authorized dealer.





Product Name: Lithium-Ion Storage Battery
Company Name: Shenzhen SOFARSOLAR Co., Ltd.
ADD: 401, Building 4, AnTongDa Industrial Park, District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen, GuangDong.P.R. China
Email: service@sofarsolar.com
Tel: 0510-6690 2300

Tel: 0510-6690 2300 Web: www.sofarsolar.com